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Abstract

Sizing and placement of piezoelectric sensors and actuators (S/As) for active vibration control of flexible structures is

commonly based on maximum control effectiveness. Mounting of piezos changes the natural frequencies of existing

structure, which would have been designed to have a certain natural frequency spectrum in relation to the disturbance

excitation. In the event of failure of the active system, natural frequencies of the structure with piezos (now rendered

passive) become significant. Therefore minimal change in natural frequency along with good controllability should be

design consideration while deciding sizing and placement of actuators. Multi-objective genetic algorithm is shown to be

useful for optimization of placement and sizing of piezo actuators for such problems. Optimal S/As sizing and locations

have been found out for stationary and rotating cantilever beams with multiple sensors/actuators.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration control of flexible structures using piezoelectric sensors/actuators has been a major
research topic during past two decades. It is imperative to have appropriately located piezoelectric sensors and
actuators (S/As) of suitable size and to ensure the maximum effectiveness for vibration control. Therefore the
efforts have been mainly concentrated on finding the optimal size and location of the S/As. Optimal locations
of piezoelectric actuators for active vibration control of cantilever beam is first addressed by Crawley and de
Luis [1]. Baz and Poh [2] solved the problem of location optimization of an actuator with pre-selected size.
Devasia et al. [3] analyzed the problem of placement and sizing of distributed piezoelectric actuators to achieve
effective vibration control. Passive damping and LQR-based optimization has been recommended. Dhingra
and Lee [4] addressed the influence of S/A locations and feedback gains on the optimum design of actively
controlled structures. Moheimani and Ryall [5] have introduced modal and spatial controllability notion,
based on H2 norm while choosing optimal locations for piezo patches.

Hac and Liu [6] have proposed a criterion for S/As placement to achieve a balance between the importance
of controlling/observing lower order and higher order modes. Kang et al. [7] studied optimal placement of
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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sensor/actuator for vibration control of laminated beams using structural damping index (product of modal

damping and mode shape function).
A few studies have used genetic algorithm (GA) for finding out the optimal sizing, locations of piezos and

other vibration control related parameters. Rao et al. [8] have used GA for identifying piezo actuator locations
for actively controlled structures. Yang et al. [9] have developed an integer–real-encoded GA for identifying
optimal sizing and location of piezoelectric patches as well as the optimal feedback control gains. Sheng and
Kapania [10] have used GA for finding the optimal locations of piezoelectric actuators for ensuring high
surface accuracy of a telescope mirror.

Practical problems are often characterized by several non-commensurable and competing measures of
performance, thus leading to multi-objective optimization problems. Dhingra and Lee [11] have developed
multi-objective (structure and control optimization), hybrid optimization model based on GA and gradient-
based search techniques for actively controlled flexible structures. Hau et al. [12] used multi-objective genetic
algorithm (MOGA) for active vibration control of rotating flexible arm using active constrained layer
damping treatment. The objectives were to minimize total treatment weight, the control voltage and the tip
deflection and to maximize the passive damping characteristics. Padula et al. [13] reviewed optimization
activities for sensor and actuator placement till 1999. Frecker [14] enumerated several optimization studies in
smart structures during 1999–2003. Maximum deflection, minimum power consumption and maximum
controllability were some of the objective functions of the studies.In above studies, for optimization of
actuator sizing and placement, different cost functions and performance measures have been used. Most of the
studies (e.g. [6,15]) have maximized the controllability. Few studies have used a quadratic cost function taking
into account the measurement error and control energy [11,16].

Thus, in most of these studies, optimization is based on control effectiveness consideration. But, the
piezoelectric S/As, while providing active control, modify the inherent stiffness/mass properties of the parent
structure. In rotating beams, the additional mass due to piezo patch actuators contributes to the centrifugal
stiffening force. The parent structure is originally designed to have certain natural frequency (NF) spectrum
vis-à-vis disturbance excitation. In the event of failure of the active system, dynamics of structure with piezos

(now rendered passive) will therefore become significant. Hence, it is imperative to mount piezo patches at such
locations, which will cause possibly minimal change in the natural frequencies of parent structure yet possess
significant control effectiveness. Authors have recently carried out an exhaustive study [17], which gives such
locations for a single pair of S/A by exhaustive search. The study identifies the piezo mounting sizing and
locations considering first four modes for stationary and rotating cantilever beam. But such an exhaustive
study becomes computationally intensive when number of piezo patches and other design variables increases.
In this study, multi-objective optimization problem is formulated using GA. Maximization of controllability
and minimization of NF changes are the objective functions. The finite element method (FEM) is employed to
model the flexible beam.

2. Dynamic modeling of a rotating beam with piezo actuators

Consider the rotating beam shown in Fig. 1. Consider an inertial frame—R(OXYZ) and a moving frame—
R0 (X0Y0Z0) which is attached to the beam, assumed to be rotating about the Y0-axis with constant speed O
(rad/s) with respect to inertial frame. Flexural vibration in X0Y0-plane is of interest. The detailed expression of
the potential and kinetic energies and then derivation of equation of motion using Lagrange’s equation are
given in Ref. [17].

2.1. Finite element modeling

The standard 2-noded beam element [18] having 3 dof at each node as shown in Fig. 2, is used for modeling
the system. u, v and yz are the deformations in axial, transverse direction and rotation, respectively. The total
stiffness consists of standard beam stiffness due to substrate beam and piezo and the geometric stiffness matrix
pertaining to the effects of rotation. The standard stiffness matrix, [kE] of the element is modified for present
study. For an element representing the substrate beam with piezo patches, flexural rigidity is given by EI ¼

EbIb þ 2EpIp and for other element, EI ¼ EbIb; where Ip is the area moment of inertia of each piezo patch
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Fig. 1. Rotating cantilever beam with piezos.
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about mid-plane of the substrate beam. Similarly, for an element representing substrate beam with piezo
patches, EA in the stiffness matrix is calculated for equivalent section.

2.1.1. Geometric stiffness matrix due to rotation

The additional stiffness due to presence of axial stress s0x caused by rotation is given by

½kG� ¼

Z le

0

½G�T ½s0x�½G�Adx (1)

where G is defined by

qv

qx

� �
¼ ½G�fqeg (2)

where {qe} consists of nodal dof. The stresses incurred in the cantilever beam due to rotation are approximated
from a quasi-static force analysis, wherein the displacements and internal forces are calculated due to inertial
and external forces on the system [19].

2.1.2. Mass, Coriolis, rotational stiffness matrices and load vector

The standard consistent mass matrix [20] is modified for the present study considering the effect of
piezoelectric patches on the lines of stiffness matrix, as discussed earlier in Section 2.1. From equation of
motion, after expressing u and v in terms of nodal coordinates using shape functions, Coriolis [c], rotational
stiffness [kR] matrices and load vectors f1(O

2) can be obtained. The detailed expressions are given in Ref. [17].

2.1.3. Piezoelectric patch modelling

In this study, electrical dof is not explicitly considered for the finite element, whereas electromechanical
coupling has been modeled as discussed in this section. The bending moment produced from the ith
piezoceramic actuator bonded on flexible link surface due to the control input voltage VCi(t) can be obtained
by considering force equilibrium in the axial direction [21]. The moment Mi applied by the piezo actuator on
the flexible link about its neutral axis is determined by

Mi ¼ ��pEptpb½tp=2þ tb=2� ¼ ĉiV CiðtÞ (3)
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where t and b are thickness and width, respectively. ep is the strain induced in the piezoceramic due to voltage
applied across it, which is given by �p ¼ d31V CiðtÞ=tp, where d31 is the piezoelectric strain constant. The
constant ĉi implies the bending moment per unit applied voltage, which is calculated from the geometric and
material properties of the substrate link and piezo patch combination [22]. Control force/moment vector,
f2(VC) is computed using Eq. (3).

2.1.4. Final equations after assembly

The final equation for the structure after assembly of all the elements is of the form,

½M�f€dg þ ½C�f_dg þ ½K�fdg ¼ fF1ðO2Þg þ fF2ðVCÞg (4)

where [M], [C], [K] ¼ [KE]+[KG]+[KR], F1(O
2) and F2(VC) are the mass, damping, stiffness matrices and force

vectors due to rotation and control moments. The eigen value problem can be written as

½M�f€dg þ ½C�f_dg þ ½K�fdg ¼ 0 (5)

In the above equation, [M] and [K] are symmetric and positive definite and [C] is skew-symmetric. The Coriolis
matrix is only proportional to the angular velocity, whereas the geometric stiffness and rotational stiffness
matrices are proportional to the square of the angular velocity and so will have greater influence on the system
natural frequencies than the Coriolis matrix. Therefore the effect of [C] matrix is negligible [23]. Also, to speed
up the computation consistent mass matrix is replaced by diagonal lumped mass matrix [18].

½M� ¼ m½1=2 1=2 l2e=24 1=2 1=2 l2e=24� (6)

where, m is the total mass of the element. The m of the element, whose base structure is covered by
piezoelectric patches on both sides is given by m ¼ ðrbAb þ 2rpApÞle. Above formulation is implemented in
MATLABs7 [24]. Subspace iteration approach [20] has been used for solving the eigen value problem to get
the natural frequencies and mode shapes.

3. Controller

In this study, proportional and derivative (PD) controller is used for actively controlling the vibration of
stationary/rotating cantilever beam. Applying a PD control law, the control voltage calculated for the ith
piezo actuator VCi from corresponding piezo sensor voltage VSi is given by

VCi ¼ �KpVSi � Kd dV Si=dt (7)

where Kp and Kd are the PD gain, respectively. The voltage of the ith sensor, VS is calculated from [25],

V Si ¼
�k2

31Ddb

g31Ĉ

Xif

i¼is

f ðxÞv00 dx (8)

where Dd is the distance from the beam neutral axis to the sensor surface and f(x) is the distribution shape
function of the sensor. The sensor is mounted between elements is and if. Also, k31 is electro-mechanical
coupling factor and g31 is piezoelectric voltage constant and Ĉ is the capacitance of sensor. The controller is
implemented using MATLABs 7.

4. Modal controllability

The controllability of a system having np piezo actuators controlling first n mode shapes is briefly described
below [26]. After carrying out modal analysis and considering n mode shapes, the system dynamics equations
can be represented in state space as

f _Xg ¼ ½A�fX g þ ½B�fUg (9)
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Fig. 4. Growth of elite population size for a beam with two collocated piezo S/A pairs.

Table 1

System properties of cantilever beam with piezo.

Attribute Beam (aluminum) Piezo patch (PZT) [31]

Geometry (L� b� t) (mm) 300� 25� 0.5 Lp� 25� 0.35

Modulus of elasticity, E (N/m2) 60� 109 62� 109

Density, r (kg/m3) 2400 7500

Strain coefficient, d31 (m/V) – 247� 10�12

Electric field (V/mm) – 1000

Table 2

Comparison of first five natural frequencies (Hz) of stationary and rotating (300 rev/min) cantilever beam with and without piezo patches.

Mode number Stationary plain beam Stationary beam with piezo Rotating plain beam Rotating beam with piezo

1 4.49 3.11 7.04 6.23

2 28.12 28.46 30.87 33.61

3 78.74 81.77 81.52 87.82

4 154.30 166.18 157.19 175.64

5 255.06 257.16 258.02 266.33

K.D. Dhuri, P. Seshu / Journal of Sound and Vibration 323 (2009) 495–514 499
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where state vector, ½X�T ¼ fqT ; _qT g, with q ¼ fq1; q2; . . . ; qng and _q ¼ fqi; _q2; . . . ; _qng, qi are the generalized
modal coordinates and electric potential vector is

½U� ¼ fva1; va2; . . . ; vanp
gT (10)
Fig. 5. Pareto optimal solution for stationary cantilever beam with a pair of collocated S/A: (a) PO objective sets and (b) PO solutions.

Fig. 6. Projection of Pareto optimal objective set on natural frequency change and controllability for stationary cantilever beam with a

pair of collocated S/A for first four modes: (a) mode 1, (b) mode 2, (c) mode 3 and (d) mode 4.
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where vai is the electric potential provided to the ith piezoelectric actuator. The system matrices [A] and [B] are
given by

½A� ¼
0 I

�o2 0

� �
(11)

½B� ¼
0

Ba

" #
; where Ba ¼

B1
a1 B1

a2 . . . B1
anp

B2
a1 B2

a2 . . . B2
anp

..

. ..
. ..

. ..
.

Bn
a1 Bn

a2 . . . Bn
anp

2
6666664

3
7777775

with Bj
ap ¼ ½f

0
jðxpeÞ � f0jðxpsÞ� (12)

f0jðxpsÞ and f0jðxpeÞ are the slopes of the jth displacement mode shape i.e. rotation dofs of the nodes
corresponding to end positions of the piezo in jth mode. Thus these values are readily available from
Fig. 7. Pareto optimal solution for stationary cantilever beam with a pair of collocated S/A for first four modes: (a) NF changeo10% and

CI420%, (b) NF changeo40% and CI450% and (c) NF changeo70% and CI490%.
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the finite element simulation. Performing the singular value decomposition (SVD) of [B] we get the singular
values

S ¼

s1

. .
.

snp

0 0 0

2
66664

3
77775; npon (13)

Magnitude of si is a function of the location and size of piezoelectric actuators. The standard subroutine
‘‘SVD’’ available in MATLABs7 has been used for SVD operation. For a single piezo patch, a singular value
denotes the controllability index (CI) where as for multiple piezos, CI is calculated by [26]

Ô ¼
Ynp

i¼1

si (14)

The higher the CI, the lower the power consumption required for control i.e. the better the control
effectiveness. Thus, in the current analysis, CI has been used as a measure of control effectiveness.
5. Optimization problem

5.1. Objective functions

As discussed earlier, the piezo sizing and locations should be such that those should give good
controllability, yet minimal change in natural frequencies (Doi/oi). This problem can be formulated in two
different ways:
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(1)
 A single-objective-optimization problem: minimizing weighted sum of reciprocal of the CI and change in
natural frequencies, under consideration. The objective function becomes

f ¼ w1
1

Ô
þ
Xn

i¼1

wiþ1
Doi

oi

(15)

where wiare the weighting coefficients which express the relative importance of the objectives and nis the
number of modes considered.
(2)
 Multi-objective optimization: minimization of (n+1) objective functions,
(a) Objective function 1: minimization of reciprocal of CI.

Minimize f 1 ¼
1

Ô
(16)

(b) Objective function (i+1): minimization of change in ith NF.

Minimize f iþ1 ¼
Doi

oi

; i ¼ 1; 2; . . . ; n (17)
In most of the cases, deciding the weights in approach 1 is quite complex and it itself becomes an optimization
problem. Also the problem of optimization of placement and sizing of piezoelectric patches, has no unique
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solution, but a set of non-dominated, alternative solutions, known as the Pareto optimal (PO) set [27].
Therefore approach 2 is used in current study.

5.2. Design variables

The mounting of piezo patches is shown in Fig. 3. The size of the substrate beam is known. Length,
thickness, width and location of the piezo patch are in general design variables. Out of these, thickness of
commercially available piezoelectric patches comes in standard sizes. In this study, it is assumed as 0.35mm.
The width of the piezo patch is assumed equal to that of substrate beam. Thus, length of the piezo patch and
its location on substrate beam are used as design parameters. The location is defined by the center of the piezo
patch. These deign variables are normalized with respect to length of substrate beam. i.e. location, rp/L and
length, Lp/L.

5.3. Constraints

The normalized length of the piezo patch (Lp/L) is varied between 0.05 and 0.5. The lengths and locations of
the piezo patches should be chosen such that those should not overlap and location should not go out of
design domain (Lp/2L to (1–Lp/2L)). It is also ensured that minimum gap between two patches is 0.01L.

5.4. MOGA formulation

In this problem, the objective functions which involve controllability and NF computations are quite
complex and gradient calculation of the objective functions is not straight forward. Therefore classical
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optimization methods which apply gradient-based search techniques cannot be used. Random search-based
GA is used for this problem.

Deb et al.’s [28] elitist non-dominated sorting GA has been used. It is based on elite-preservation and
explicit diversity-preservation strategy. Real-coded simulated binary crossover (SBX) [29] and polynomial
mutation [30] operators are used for crossover and mutation, respectively. Unlike binary-coded GA, real-
coded GA does not need encoding/decoding of real/binary variables. Genetic operators are formulated for
real numbered variables. Fitness of the solution is assigned equal to the value of the objective function. Using
trial and error, probabilities 0.9 and 0.1 are found to be good for crossover and mutation, respectively. The
code is implemented in MATLABs7.

5.4.1. Population size and number of generations

Convergence algorithms for MOGA are not fully established [28]. The convergence of the MOGA involves
two main tasks: convergence to PO front and maintenance of a diverse PO set. While these are complex, an
idea of convergence can be drawn from the size of elite population in each generation. Elite population is the
non-dominated (Front 1) solutions.

Beam with two pairs of collocated piezo S/A is chosen to decide the population and number of generations
needed for good converged results. Fig. 4 shows the size of elite population at the end of each generation for
population size of 150. It shows the continuous growth in elite population size till 38 generations and after that
whole population becomes elite except few occasional drops by 2–3 numbers.

When a better non-dominated solution is discovered, a few existing elite population members may become
dominated and hence the size of the elite population decreases. As the elite population size reaches the whole
population size and remains constant over generations, it indicates that the probability of the emergence of
dominated solutions has reduced and Front 1 reaches to PO front. To find out the population size for minimal
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computation cost, various simulations with different population size have been done and population size of
150 has been found to be adequate. For further studies, population size has been taken as 150 except for beam
with a single piezo. For those cases, present results are compared with those from exhaustive search study [17],
and therefore sufficiently large population (500) has been taken. The results are generated for 100 generations
to ensure proper convergence.
6. Optimization results and discussion

Multi-objective GA has been applied to identify the sizing and placement of piezoelectric patches on
stationary and rotating cantilever beams. The results are generated for single and multiple piezo patches
mounted on the substrate beam. The material properties and geometric parameters of substrate beam and
piezoelectric patches used in this study are given in Table 1. While representing the results, length and center of
the piezo patch are normalized with respect to length of the substrate beam. The CI is normalized considering
maximum value of the controllability as 100 percent. For stationary beam, the NF change is calculated about
the corresponding mode frequency of stationary plain beam (i.e. substrate only); while in rotating case, it is
calculated with respect to natural frequencies of rotating plain beam. The length of the piezo patches is varied
from 0.05L to 0.5L for the case of beam with a single pair (collocated sensor and actuator) of piezo patches,
while for beam with multiple pairs, the total length of piezo actuators on one side of beam is assumed less than
or equal to 0.5L.

To study the effect of the rotation and piezo mounting, the natural frequencies of the stationary plain beam,
stationary beam with piezo, rotating plain beam and rotating beam with piezo are compared in Table 2.
A cantilever beam of 300� 25� 0.5mm is used for the study. A piezo patch of length 40mm is mounted on
Fig. 12. Pareto optimal solution for rotating (O/o1 ¼ 0.8) cantilever beam with a pair of collocated S/A for first four modes: (a) NF

changeo10% and CI420%, (b) NF changeo40% and CI450% and (c) NF changeo70% and CI490%.
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the cantilever beam between 210 and 250mm; the distances being measured from the fixed end. The results
from Table 2 show that piezo mounting causes appreciable changes in the dynamics and leads to changes in
natural frequencies. The changes (�30 percent) are more for fundamental frequency. Rotation also caused
appreciable changes (�57 percent) in the fundamental frequency of plain beam over its stationary value.

6.1. Stationary cantilever beam

The results of individual modal optimal locations are first reported to show that optimal location of one
mode be not necessarily optimal for other modes; subsequently optimal sizing/locations are identified
considering first four modes together by overlapping their individual modal optimal regions. The results are
reported for 1–4 number of piezo patches.

6.1.1. Beam with single piezo actuator

6.1.1.1. Individual modal optimal locations. Fig. 5 gives the PO solutions for first four modes. Fig. 5(a) gives
the PO objective set and the Fig. 5(b), the PO solutions. Fig. 5(a) clearly shows that the maximum
controllability and minimum NF change are contradictory criteria. Also, NF change is more for fundamental
frequency for given control effectiveness among first four modes. From these figures, it can be observed that
each individual modal PO solutions give good controllability (CI upto 70 percent) without much change (less
than 1 percent) in corresponding natural frequencies. For mode 1, the non-dominated solution is having piezo
center (rp/L) at around 0.4 and normalized piezo length 0.5. The other solutions are patches of length 0.5L
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mounted between 0.25L and 0.4L giving controllability more than 74 percent. For mode 2, high controllability
(CI490%) solutions are piezo patches of length 0.5L placed in the region 0.55L–0.65L. Piezos of length
0.35L–0.48L placed between 0.75L–0.85L give controllability more than 70 percent for mode 3. Piezo patches
having length 0.25L–0.35L positioned between 0.8L–0.85L impart controllability more than 75 percent for
mode 4. Thus, as we go from modes 2 to 4, for achieving higher controllability, the size of the piezo patch
decreases and their position shifts towards free end.

6.1.1.2. Considering all four modes together. The four modes are now considered together to find the optimal
locations. The population size has been increased to 500 to have sufficient data points to represent multi-
faceted PO surface. Fig. 6 gives the projections of PO objective sets in NF change–CI planes. It is clearly
observed that higher controllability can be achieved at the cost of more change in NF.

The results from MOGA are compared with results of our earlier exhaustive search-based study [17] on a
beam with a single piezo patch S/A. The PO solutions for different combinations of NF change and CI are
plotted in Fig. 7. PO solutions are found to lie within the region identified by exhaustive study. Exhaustive
search becomes computationally very intensive for higher number of piezo actuators.

Fig. 8 shows three PO solutions, viz. maximum controllability of all four modes, least change in natural
frequencies and, CI450% with moderate change in natural frequencies. It is to be noted that the lengths of
the piezo patches are not much different for the three cases, but the placement in case of least NF change is
such that the change in natural frequencies has dropped to less than 3 percent, from an average NF change of
30 percent for maximum controllability case. A very good CI (75 percent) is still possible with case-2. In case-3,
the CI is 82 percent with an average NF change 9 percent, by slightly increasing the length of piezo patch from
0.37L (case-2) to 0.47L with almost no change in the center of piezo patch. The length of the piezo patch in
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first case is 0.42L. Thus, placement of piezo patch i.e. disposition of additional stiffness and mass plays
important role in deciding degree of NF change.

6.1.2. Beam with multiple piezo patches

PO solutions have been found for two, three and four piezoelectric patches. PO solutions (actuator
placement and sizing) for three different cases, viz. maximum controllability, least NF change and a trade-off
solution of former two are given in Figs. 9–11. Some of the observations are: (1) the fundamental frequency
change has dropped appreciably (from approximately 50% to 25%) from a single actuator case to multiple
actuator case and (2) least NF change is ensured by multiple, short actuators.

6.2. Rotating cantilever beam

6.2.1. Beam with single piezo actuator

The beam is assumed to be rotating at 0.8 times the fundamental frequency. The PO objective sets in various
NF change–controllability planes resemble those from stationary beam with a single piezo with some minor
discrepancies. For a typical speed considered, the NF changes are less for rotating case than for stationary
beam. The NF changes depend on the speed of rotation, the size and location of sensors/actuators and relative
material properties of substrate and piezoelectric actuators. The PO solutions have been plotted for three
different cases in Fig. 12.

6.2.2. Beam with multiple piezo actuator

PO solutions have been found for two, three and four piezoelectric patches mounted on rotating cantilever
beam. The beam is assumed to be rotating at 0.8 times the fundamental frequency of stationary beam. The
solutions for two extreme cases (i.e. maximum controllability and least changes in the natural frequencies)
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and, trade-off of these two are reported in Figs. 13–15. Some of the observations about location, sizing and
NF change of rotating case in comparison with stationary are
(1)
Fig.

beam
Just as in the case of stationary beam, shorter piezos do not cause much change in NFs and NF change for
fundamental frequency is more than for others.
(2)
 The piezo actuator locations for maximum controllability are not much changed, while most of the cases,
piezo actuator locations for minimum NF change criterion are shifted towards fixed end.
(3)
 For rotating case, NF changes for most of the modes are smaller compared to those for stationary case.
The changes in the natural frequencies are caused due to change in stiffness and inertia due to piezo
patches. Rotation causes additional pre-stressing. The effect of pre-stressing due to rotation has been
observed to decrease as the locations of the piezo patches shift towards fixed end.
6.3. Active vibration control of cantilever beam using S/A locations based on dynamics and controllability

consideration

The performance of the present scheme for optimally locating/sizing piezos is investigated by comparing the
active vibration control effectiveness of optimal piezo sizing/location with those for randomly selected piezo
sensors/actuators. Simulations have been carried out for two examples: active vibration control of stationary
cantilever beam, and active vibration control of rotating cantilever beam.
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6.3.1. Active vibration control of stationary cantilever beam

The performance of the location/sizing of piezoelectric S/A, obtained in Section 6.1.1.2, is compared with a
randomly selected location of piezo S/A. A solution, rp/L ¼ 0.25 and Lp/L ¼ 0.18 from Fig. 7(b) is chosen for
the study. Cantilever beam of dimensions 300� 25� 0.5mm is used for the study. The material properties of
the cantilever beam and piezoelectric patches are given in Table 1. The locations of the piezo S/A are as
follows: trade-off solution (Fig. 7(b)) ) 48–102mm, and randomly selected location ) 123–177mm. The
distances are measured from the fixed end of the cantilever beam. Length of the S/A is same for both the cases.

Force excitation as shown in Fig. 16(a) is given at a distance 30mm from fixed end. PD control has been
implemented for vibration control. The gains chosen for the control are: Kp ¼ 600 and Kd ¼ 115. The
vibration at the free end and corresponding active control efforts are shown in Figs. 16(b) and 17, respectively.
The NFs of plain beam and beam with piezo S/A are given in Table 3.

From Figs. 16(b) and 17, it can be observed that the control performance is much better for the design based
on present scheme (trade-off of controllability and NF change) than randomly selected locations for piezo S/As.
Considering the first four modes, the CI values for trade-off solution and random selection are 63.27% and
43.21%, respectively, and that is reflected from Figs. 16 and 17.
6.3.2. Active vibration control of rotating cantilever beam

The performance of PO solutions for rotating case is verified by simulating the active vibration control
using three collocated sensors/actuators. Sizing and location of piezoelectric sensors/actuators are given in
Table 4. The cantilever beam has been rotated using angular velocity profile as shown in Fig. 18(a). Inertia
forces set the vibrations. PD control has been implemented for vibration control. Fig. 18(b) gives the
comparison of three cases of the PO solution and, one randomly selected design variables (piezo size and
location), with uncontrolled vibration response. It can be seen that the vibration is suppressed using active
Table 3

Natural frequencies (Hz) of the cantilever beam for different configurations.

Mode number Plain beam Random selection Trade-off solution

1 4.46 3.88 (�13.00) 5.17 (15.92)a

2 27.95 25.38 (�9.19) 23.18 (�17.07)

3 78.26 73.44 (�6.16) 71.31 (�8.88)

4 153.36 170.08 (10.9) 153.52 (0.10)

aValues in bracket show the % variation in natural frequencies from those of plain beam.
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vibration control system. The vibration control using maximum controllability (i.e. CI ¼ 100 percent) gives
the best, while min NF change gives the worst control performance. The performance of random selected
parameters is better than the minimum NF change solution.
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Table 4

Pareto optimal solution with three piezoelectric actuators.

Criteria Piezo location (rp) and length (Lp)

Patch 1 Patch 2 Patch 3

Maximum controllability 70 (50)a 155 (49) 265 (41)

Least NF change 89 (24) 139 (15) 287 (16)

CI450% with lesser NF change 91 (35) 141 (48) 246 (31)

Random selection 82 (30) 140 (20) 180 (40)

aThe values in parenthesis show the piezo-patch length (Lp) in mm.
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7. Summary

The study uses multi-objective genetic algorithm (MOGA) to identify the optimal locations and sizing of
piezoelectric sensors/actuators. These locations and sizing give good controllability with minimal changes in
system natural frequencies. The study has been carried out for stationary and rotating cantilever beam with
upto four piezoelectric actuators. Finite element approach has been used for the evaluation of the objective
functions (controllability and natural frequency change). Elitist non-dominated sorting GA based on
simulated binary crossover and polynomial mutation has been used. PO solutions have been found out for
individual modes. The Pareto optimal solutions for three cases, viz. maximum controllability, minimal change
in natural frequencies and good trade-off of former two are discussed. Also the performance of the Pareto
optimal solution for above three cases is compared with randomly selected solution using active vibration
control simulations. The results for beam with a single piezo actuator from MOGA are compared with those
from exhaustive search method. Results indicate that the least NF change is obtained using multiple, short
piezos. NF change for fundamental frequency is more than for higher frequencies. Also, NF change for
fundamental frequency drops appreciably after distributing a single actuator into multiple patches. For
rotating case, piezo actuator locations for maximum controllability case are not much changed, but for
minimal NF change those are shifted towards fixed end compared to stationary beam.
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